Нанотехнологии: этапы развития

Интенсивные исследования в области нанотехнологий, активизировавшиеся на рубеже XX—XXI вв., стали двигателем происходящих ныне кардинальных изменений в промышленном производстве, привели к качественному скачку в развитии методов и средств обработки информации, получения электрической энергии, синтеза новых материалов на основе передовых научных подходов к познанию материи. Еще до наступления «наноэры» люди сталкивались с наноразмерными объектами и протекающими на атомно-молекулярном уровне процессами, использовали их на практике. Например, на наноуровне происходят биохимические реакции между макромолекулами, из которых состоит все живое, катализ в химическом производстве, брожение, идущее при изготовлении вина, сыра, хлеба. Однако так называемая «интуитивная нанотехнология», которая первоначально развивалась стихийно, без надлежащего понимания природы происходящего, не могла быть надежным фундаментом в будущем. Поэтому все большую актуальность приобретают научные изыскания, расширяющие горизонты наномира и направленные на создание принципиально новых продуктов и ноу-хау.
Системные исследования наноразмерных объектов берут свое начало в XIX в., когда в 1856—1857 гг. английский физик Майкл Фарадей впервые изучил свойства коллоидных растворов нанодисперсного золота и тонких пленок на его основе. Интересно отметить пример своеобразного предвидения, сделанного в 1881 г. писателем Николаем Лесковым в повествовании о тульском мастере Левше, сумевшем подковать «аглицкую» блоху «наногвоздями», которые можно было разглядеть только в «мелкоскоп» с увеличением в 5 млн раз, что соответствует возможностям современной высокоразрешающей микроскопии (на это первым обратил внимание российский ученый, специалист в области наноматериаловедения Ростислав Андриевский).
В первой половине ХХ в. зародилась и получила развитие техника исследования нанообъектов. В 1928 г. предложена схема устройства оптического микроскопа ближнего поля. В 1932 г. впервые создан просвечивающий электронный, а в
1938 г. — сканирующий электронный микроскоп. Во второй половине XX в. начала формироваться принципиальная научная и технологическая база для получения и применения наноструктур и наноструктурированных материалов.
В 1959 г. американский физик, нобелевский лауреат Ричард Фейнман прочитал ставшую впоследствии знаменитой лекцию под названием «Внизу полным-полно места: приглашение в новый мир физики», в которой впервые была рассмотрена возможность создания наноразмерных деталей и устройств совершенно новым способом — путем поштучной «атомарной» сборки. Ученый заявил: «Пока мы вынуждены пользоваться атомарными структурами, которые предлагает нам природа». И далее добавил: «Но в принципе физик мог бы синтезировать любое вещество по заданной химической формуле».
В 1972 г. создан оптический микроскоп ближнего поля. В 1981 г. ученые Герд Бинниг и Генрих Рорер, работавшие в то время в филиале IBM в Цюрихе, предложили конструкцию сканирующего туннельного микроскопа. Позже, в 1986 г., за работы по сканирующей туннельной микроскопии они были удостоены Нобелевской премии по физике. В этом же 1986 г. ими был разработан атомно-силовой микроскоп.
В 1974 г. японский ученый Норио Танигучи при обсуждении проблем обработки веществ ввел термин «нанотехнология». В 1981 г. американский ученый Г. Глейтер впервые использовал определение «нанокристаллический». Позже для характеристики материалов стали употреблять такие слова, как «наноструктурированный», «нанофазный», «нанокомпозиционный» и т.п.
В 1975 г. были теоретически рассмотрены принципиальные возможности существования особых видов наноразмерных объектов — квантовых точек и квантовых проволок.
В 1986 г. американский физик Эрик Дрекслер в своей книге «Машины созидания: пришествие эры нанотехнологии», основываясь на биологических моделях, ввел понятие о молекулярных роботах, а также развил предложенные Фейнманом идеи нанотехнологической стратегии «снизу вверх».
Мощным стимулом для активизации направления стало создание принципиально новых углеродных наноматериалов. Долгое время считалось, что существуют две единственные полиморфные модификации углерода — графит и алмаз. Однако, как оказалось, пределы полиморфных превращений данного элемента этим не ограничиваются, свидетельством чему являются весьма необычные по своей структуре и свойствам фуллерены и углеродные нанотрубки.
Впервые возможность существования фуллеренов была предсказана японскими учеными Эйджи Осавой и Зеншо Иошидой в 1970 г. Чуть позже, в 1973 г., российские исследователи Дмитрий Бочвар и Елена Гальперн сделали первые теоретические квантово-химические расчеты такой молекулы и доказали ее стабильность. В 1980-е гг. были получены результаты астрофизических исследований спектров некоторых звезд, указывающие на существование подобных комплексов. В 1985 г.
фуллерены были впервые синтезированы. Это удалось сделать английскому ученому Гарольду Крото и американским Роберту Керлу и Ричарду Смолли, за что в 1996 г. они были удостоены Нобелевской премии. В ходе изучения масс-спектров паров графита, полученных в результате лазерного воздействия, ими были выявлены крупные агрегаты С60 и С70, состоящие соответственно из 60 и 70 атомов углерода. В 1990 г. в Германии ученые В. Кретчмер и К. Фостирополус разработали технологию, позволившую получать фуллерены в достаточно больших количествах. Как выяснилось позже, такие комплексы существуют и в природе. Они были обнаружены в 1992 г. в природном углеродном минерале — шунгите (от названия поселка Шуньга в Карелии). Углеродные нанотрубки открыл в 1991 г. японский ученый Сумио Иджима. Фуллерены и углеродные нанотрубки с момента их обнаружения привлекли внимание многих исследователей необычностью своей структуры и свойств. В ходе последующих изысканий были выявлены различные производные этих образований, которые получались в результате взаимодействия фуллеренов и углеродных нанотрубок с другими веществами. Было также установлено, что структуры, подобные им, могут быть образованы атомами не только углерода, но и других элементов. В частности, в 1992 г. обнаружены фуллереноподобные наночастицы Ti8C12. В том же году были впервые синтезированы неуглеродные нанотрубки на основе MoS2 и WS2.
О наличии глубоких корней, лежащих в основе нынешних нанотехнологических исследований, свидетельствует история формирования одной из самых молодых областей химии — супрамолекулярной, открывающей широкие возможности для создания различных видов молекулярных наноструктур.
Термин «супрамолекулярная химия» введен французским химиком Жаном Мари Леном в 1978 г. Несколько ранее, в 1973 г.,
в его трудах появилось слово «супермолекула», которое было известно еще в середине 1930-х гг. и употреблялось для описания более высокого уровня организации, возникающего при образовании ряда сложных молекулярных соединений. Супермолекулы состоят из компонент, которые связываются друг с другом благодаря механизму молекулярного распознавания, предполагающему наличие между ними определенной комплементарности. На возможность его существования еще в 1906 г. указывал немецкий биохимик Пауль Эрлих, подчеркивая, что молекулы реагируют друг с другом строго селективно. Таких же взглядов придерживался немецкий химик-органик Эмиль Фишер, кото-
рый в 1894 г. сформулировал принцип «ключ — замок», предполагающий, что в основе молекулярного распознавания лежит геометрическая комплементарность компонент, образующих супрамолекулярный ассоциат. Вещества, которые в настоящее время рассматривают как соединения включения, ранее наблюдали разные ученые: Аксель Кронстедт в 1756 г.,
Джозеф Пристли в 1778 г., Б. Пелетье и В. Карстен в 1785—1786 гг., Гемфри Дэви в 1823 г. Термин «клатрат» в его современном толковании введен Г. Пауэллом в 1947 г. Важный этап в становлении супрамолекулярной химии связан с открытием американским ученым Чарльзом Педерсеном в 1962 г. краун-эфиров — молекул плоской формы, обладающих полостью, способной включать в себя молекулы другого сорта. В 1967 г. Жан Мари Лен осуществил синтез аналогичных молекул с трехмерной полостью, названных криптандами. В начале 1980-х гг. американский ученый Дональд Крам сконструировал «молекулы-контейнеры» с предварительно организованной структурой — сферанды и кавитанды. За сравнительно короткий период нанотехнологии получили широкое распространение в самых различных областях человеческой деятельности. Примером тому является история развития биотехнологии. Этот термин был предложен в 1917 г. венгерским инженером Карлом Эреки для описания процесса выращивания свиней с использованием в качестве корма сахарной свеклы. Под биотехнологией он понимал «все виды работ, при которых из сырьевых материалов с помощью живых организмов производятся те или иные продукты».
Хронология дальнейшего развития биотехнологии выглядит следующим обра-
зом: в 1943 г. освоен промышленный выпуск пенициллина; в 1944 г. обнаружен генетический материал — дезоксирибонуклеиновая кислота — ДНК, а в 1953-м —
двойная спираль ДНК; 1966 г. — расшифрован генетический код; 1970 г. — выделена первая рестриктаза — фермент, способный расщеплять ДНК; в 1973 г. синтезирован полноразмерный ген т-РНК —
транспортной рибонуклеиновой кислоты; в 1975 г. разработана технология рекомбинантных ДНК, а в 1976 г. — методы определения нуклеотидной последовательности ДНК. Последующие годы ознаменовались развертыванием широкого фронта исследований в области генной инженерии, которые привели в 1990 г. к началу работ над проектом «Геном человека».
В 1997 г. из дифференцированной соматической клетки было впервые клонировано млекопитающее. Все это — яркий пример возможностей нанотехнологий применительно к биологическим объектам.
Другим примером приложения нанотехнологий, но уже к «неживым» предметам, является история разработки идеи квантовых компьютеров. В 1985 г. профессор Оксфордского университета Дэвид Дойч предложил математическую модель квантово-механического варианта машины Тьюринга. В 1994 г. П. Шор (фирма AT&T Bell) показал, что такая машина может получить практическое воплощение.
В частности, она оказалась эффективной в решении задач о разложении на множители больших чисел. В настоящее время алгоритм, предложенный Шором, широко применяется при создании различных типов квантовых компьютеров. В 1998 г. М. Такэути (фирма «Мицубиси Дэнки») провел принципиальные эксперименты по квантовым вычислительным системам с использованием фотонов. В 1999 г.
Н. Накамура (фирма NEC) успешно изучил возможности практической работы квантового компьютера.
Нынешний период в развитии нанотехнологий характеризуется активизацией исследований и разработок в данной области, вложением в них существенных инвестиций. Особенно ярко эти тенденции проявляются в ведущих индустриальных странах мира. США в данном направлении занимают лидирующие позиции.
В 2001 г. была утверждена Национальная нанотехнологическая инициатива (ННИ), основная идея которой была сформулирована следующим образом: «Национальная нанотехнологическая инициатива определяет стратегию взаимодействия различных федеральных ведомств США с целью обеспечения приоритетного развития нанотехнологий, которая должна стать основой экономики и национальной безопасности США в первой половине XXI в.».
В 1996—1998 гг., до принятия ННИ, специальный комитет американского Центра оценки мирового состояния технологий осуществлял мониторинг и анализ развития нанотехнологий во всех странах и выпускал для научных, технических и административных специалистов США обзорные информационные бюллетени об основных тенденциях и достижениях. В 1999 г. состоялось заседание Межотраслевой группы по нанонауке, нанотехнике и нанотехнологиям (IWGN), результатом которого стала разработка прогноза исследований на ближайшие 10 лет. В том же году выводы и рекомендации IWGN были поддержаны Национальным советом по науке и технике при президенте США, после чего в 2000 г. было официально объявлено о принятии ННИ.
В преамбуле к документу тогдашний президент США Билл Клинтон заявил: «Я выделяю 500 млн долл. в текущем финансовом году на государственную нанотехнологическую инициативу, которая позволит нам в будущем создавать новые материалы (превосходящие по характеристикам существующие в тысячи раз), записать всю информацию Библиотеки Конгресса на крошечном устройстве, диагностировать раковые заболевания при появлении нескольких пораженных клеток и добиться других поразительных результатов. Предлагаемая инициатива рассчитана по крайней мере на 20 лет и обещает привести к важным практическим результатам».
Япония, как и США, уделяет нанотехнологиям большое внимание. В 2000 г. япон-
ская экономическая ассоциация «Кэйданрэн» организовала специальный отдел по нанотехнологиям при промышленно-техническом комитете, а в 2001 г. был разработан общий план развития нано-
технологических исследований. Его основные положения сводились к следующему: определить в качестве основных направлений «прорыва» в нанонауке информационные технологии, биотехнологии, энергетику, экологию и материаловедение; обеспечить приток крупных капиталовложений в отрасли производства, основанные на нанотехнологиях; энергично развивать исследования в указанных направлениях и внедрять их результаты в производство таким образом, чтобы они стали «флагманами» грядущей нанотехнологической революции; разработать национальную стратегию развития нанотехнологий, организовать эффективное сотрудничество промышленных, государственных и научных ведомств и организаций в данной сфере.
Страны Западной Европы начали проводить работы в области нанотехнологий в рамках соответствующих национальных программ. В ФРГ нанотехнологические изыскания поддерживаются в основном Министерством образования, науки, исследований и технологий. В Англии руководство этим направлением осуществляет Совет по физико-техническим исследованиям, а также Национальная физическая лаборатория. Во Франции стратегию развития нанотехнологий определяет Национальный центр научных исследований.
Все больше внимания нанотехнологиям уделяется в Китае, Южной Корее, ряде других государств. Нанотехнологические изыскания начали осуществляться и в странах СНГ, в частности в России и Украине, как правило, в ходе проведения государственных научных программ.
В Беларуси подобные работы идут в рамках ГКПНИ «Наноматериалы и нанотехнологии», принятой на 2006—2010 гг. Она является продолжением предыдущей государственной программы ориентированных фундаментальных исследований с таким же названием, которая выполнялась в 2003—2005 гг.
Сегодня трудно предвидеть все социальные последствия внедрения нанотехнологий, так же как в середине ХХ в. трудно было предсказать, что повлекут за собой разработки в области электроники и информатики. Предполагается, что в ближайшие годы бюджетные ассигнования ведущих индустриальных стран на изыскания в области нанотехнологий существенно возрастут. При этом намеченные исследования будут нацелены на решение ряда конкретных задач: создание сверхминиатюрных запоминающих устройств с мультитерабитовым объемом памяти; повышение быстродействия компьютеров в миллион раз; создание сверхпрочных материалов и на их основе — новых транспортных средств; выпуск генетических и медицинских препаратов для диагностики и лечения раковых заболеваний, СПИДа; разработка новых материалов и процессов для защиты окружающей среды и др.
О большом внимании, которое уделяет мировая научная общественность проблемам развития нанотехнологий, свидетельствует присуждение в 2007 г. Нобелевской премии по физике за открытие и исследование одного из необычных явлений наномира — эффекта гигантского магнетосопротивления (ГМС). Премии удостоены француз Альберт Ферт и немец Петер Грюнберг, независимо друг от друга открывшие эффект ГМС в 1988 г. Магнетосопротивление — это изменение электрического сопротивления проводника, вызванное действием внешнего магнитного поля. ГМС, в отличие от классического магнетосопротивления, проявляется в существенно более резком возрастании электросопротивления во внешнем магнитном поле (на десятки процентов). Физический механизм ГМС базируется на зонной теории твердого тела, в частности на спин-зависимых транспортных явлениях. Эффект наблюдается в магнитных нанопленках и нанопроволоках, которые благодаря ему можно использовать для создания высокочувствительных датчиков магнитного поля, способных реагировать на ничтожно малое его изменение. Их применение существенно изменяет промышленное производство устройств магнитной записи на жесткие диски и другие магнитные носители информации.
Приведенные факты свидетельствуют, что человечество вступило в эру активного освоения нанотехнологий. Уже достигнутые результаты впечатляют, а впереди еще более интригующие перспективы.